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The removal of accessory nonessential functions is one of 
the strategies used to engineer microbial phenotypes. This 
approach relies on the assumption that cellular resources 

for gene expression are limited and, therefore, by removing genes 
unneeded in a certain environment, the cell is capable of allocating 
resources to other functions (for example, expression of recombinant 
genes). These minimization approaches are mostly done by reducing 
genome size and gene number including performing random dele-
tions1,2, however, the precise way in which the resource allocation 
takes place after the genetic intervention is not considered.

Organisms respond to the environment by cellular signaling 
pathways encoded in regulatory networks3. The intricacy of the 
lifestyle of an organism is generally translated into signaling com-
plexity4. Biological regulatory networks are robust5 and evolvable6 
to cope with environmental and lifestyle perturbations, however, 
this robustness involves intrinsic trade-offs, such as resource alloca-
tion strategies. It has been shown that cellular states are naturally 
‘primed’ for typical upcoming changes. Bacteria anticipate to fluctu-
ations in the environment7,8 draining resources from functions that 
are mostly performed in relatively stable conditions. The expression 
of anticipation functions, also called hedging functions, is encoded 
in the regulatory network and has a proteomic cost9. Genome-scale 
models along with experimental datasets enable the calculation 
of the minimal theoretical proteome needed to sustain growth in 
a defined condition10. Therefore, comparing minimal theoretical 
proteomes with measured proteomes reveals the costs of the hedg-
ing proteome allocation. Proteome econometric approaches can 
facilitate the engineering of cellular states or phenotypes aimed at 
displaying an engineered function. Recent studies have focused on 
the host–construct interactions for increasing predictability of syn-
thetic constructs11–13. In addition to these approaches, the rational 
design of the host used for expression following econometric mod-
els can be adopted to improve the performance of synthetic con-
structs, including production phenotypes for molecules of added 
value. Among other benefits, streamlined organisms obtained this 
way are less likely to develop undesired emerging behaviors11.

We foresee the use of regulatory mechanism as a control layer 
that will aid in the design of cellular phenotypes. Our ability to engi-
neer biological systems depends on understanding how cells sense 
and respond to their environment at a system level. Few studies have 
tackled this issue and none of them in a rational way.

In this work we developed a new top-down cell engineering strat-
egy for E. coli using the transcriptional regulatory network (TRN) as a 
control layer for proteome allocation. By combining high-throughput 
proteomic information, regulatory network interactions and gene 
essentiality observations, we implemented a method capable of find-
ing the minimal set of genetic interventions required to divert the 
resources invested in superfluous hedging into increased biosynthetic 
potential. The resulting strains exhibited an increased availability of 
cellular resources to express engineered functions.

Results
Identification of dispensable TFs for proteome release. The 
genome-scale model of metabolism and gene expression (ME-model) 
computes the minimal theoretical proteome and allows calculating 
the cost of expressing hedging functions. It can be used to simulate 
different scenarios of expression of the hedging proteome (as unused 
protein fraction coefficient, see Methods)14. These simulations 
allowed us to calculate the costs and the benefits of different inter-
ventions, for example by modulating the expression of the hedging 
proteome, expressed in terms of growth, the size of both essential 
and recombinant proteome sectors (Extended Data Fig. 1).

We built on ME-models to design strains containing the minimal 
genetic interventions that reduced the greatest amount of proteomic 
resources not required to grow in a specific condition. Our method 
used transcription factors (TFs) as the key dials controlling the allo-
cation of the hedging proteome in a predefined specific environ-
ment. We began by establishing batch growth in minimal medium 
(M9) supplemented with glucose as the sole carbon source as the 
defined environment for the first case of this study. Then, by compil-
ing experimental and genome-scale model generated essential gene 
sets, we generated a list of essential genes for growth in this specific 
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environment (Fig. 1a and Supplementary Table 1, see Methods). 
Once the case-specific gene essentiality was defined, we analyzed the 
TF–gene interactions compiled in RegulonDB15. After determining 
gene essentiality and TF–gene regulatory interactions, we analyzed 
the subnetwork of interactions of each TF looking for dispensable 
TFs, defined as those that do not activate the expression of any essen-
tial gene. According to our analysis, 156 of the 200 TFs contained in 
the regulatory network can be eliminated (Fig. 1b). Since our goal 
was to reduce the hedging proteome, out of the 156 dispensable TFs 
we selected as candidates for nonessential function reduction the 34 
TFs with at least one unique (meaning it is not activated by any other 
TF) positive regulated gene (Supplementary Table 2) (see Methods); 
this gives the certainty of silencing at least one gene.

Integration of proteomic and regulatory network data. We deter-
mined the proteome associated to each nonessential TF in our net-
work integrating a quantitative proteomic dataset16 that provides 
protein copy number per cell under 22 different growth conditions  
with 95% of proteome coverage (by mass). Here we defined two 

emerging properties derived from the quantitative proteomics data 
integration: the proteomic load of a gene (PL) in femtograms (fg) 
of protein per cell (Fig. 2a) and the proteomic balance (PB) of a TF 
resulting from the summation of the PL of the genes that would 
result silenced or activated by the elimination of a TF (Fig. 2b). PB is 
conceptually important to rank the TFs according to the size of the 
proteome they control, since it considers the net addition of protein 
mass (in fg of protein per cell) liberated when removing a TF.

Computational search of minimal TF eliminations. Many TFs 
have shared target genes (Fig. 2c), in fact, many of them are part of a 
simplified version of a dense overlapping regulon networks motif17, 
meaning that a particular combination of TFs is needed to ‘fully’ 
silence these targets, generating a full landscape of potential pro-
teome liberation composed by all the different combinatorial TFs 
deletions.

To assist with the design of the mutant strains we devel-
oped a computational method. We called our method ReProMin 
(regulation-based proteome minimization); it integrates the TF–gene  
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Fig. 1 | Gene essentiality and tRN analysis in the predefined condition. a, essentiality profile of the E. coli genes (~4,600) under selected growth 
condition. the essential genes considered for this analysis are divided into core essential (523 genes, always needed) and conditional (133 genes, 
M9-glucose needed). b, Graphical representation of the subnetwork of tF–gene interactions considered for the classification of the tFs; gray squares 
represent essential tFs, light green squares dispensable tFs, dark green squares candidate tFs, dark blue circles essential genes, light blue circles 
dispensable genes and arrows positive interactions. the lower bar shows the number of tFs in each classification from the total considered (203 tFs).
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Fig. 2 | emerging properties from proteomics data integration. a, the PL of a gene is defined as the molecular weight of the protein (MWP) multiplied 
by the number of copies per cell (Ccell) divided by Avogadro’s number (NA) (6.022 × 108 fg equivalent). the more expressed the gene is, the more PL it 
generates. b, the PB of a tF defined as the sum of the PL of the silenced genes minus the sum of the PL of the induced genes. c, Schematic of a simple case 
of shared regulation in which removing both tFs silences all target genes but this is not the case when the tFs are silenced individually.
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interaction network and quantitative proteomic data to generate 
and solve the proteome reduction landscape for a particular TF list, 
finally returning the n-size combination of mutations that silences 
the higher proteomic load in a particular growth condition (see 
Methods). Using ReProMin we computed some parts of a proteome 
liberation landscape depending on the number of combinations 
(Fig. 3a). For a particular TF list, the proteome liberation land-
scape boundaries are defined by the TF combination that releases 
the highest and lowest PL for all the possible TF combination sizes; 
meaning that the larger the TF list, the larger and complex the land-
scape space. The computing time required to solve a landscape is 
defined by the number of possible combinations that increments 
exponentially as the TF list becomes larger (see equation (2) in 
Methods)

ReProMin calculations reveal potential proteome release. We 
used the glucose minimal medium condition as the starting point 
for the analysis, since we defined the gene and TF essentiality in 
that condition from experimental data. We considered two cases to 
do the calculations. The shared target case: nonessential TFs with 
positive PB (132 TFs), which takes into account some TFs with no 
unique regulated genes and the unique target case: considering pre-
viously defined candidate TFs with a positive PB (20 TFs).

For the shared target case the computational tool was able to 
solve combinations up to six TFs (>6 × 109 combinations roughly 
taking 95 h of computation, Supplementary Table 3), but we did not 
evaluate the next case due to its extremely large number of combina-
tions (seven TFs >11 × 1010 combinations). To maximize the solved 
landscape space, we continued resolving other areas of the space 
where the number of combinations is small enough to be solved 
(when n→0 or n→r, see Methods, equation (2)).

Our calculations revealed that the elimination of all 132 nones-
sential TFs is not the best case of proteome liberation. However, the 
elimination of 130 TFs would potentially liberate up to 1.06% of the 
total E. coli proteome but up to 0.94% can be liberated by remov-
ing the top combination of six TFs, while up to 0.53% of the total 
proteome can be released by removing a top combination of three 
TFs (Fig. 3a).

For the unique target case, the elimination of the entire 20 candi-
date TFs would liberate up to 0.72% of the proteome, and our simu-
lations show that there is not a significant improvement in resource 
release after the elimination of eight TFs. In fact, 60% of the total 
potential liberation can be achieved by removing just the top three 
TFs (Fig. 3b).

We also performed ReProMin calculations for other conditions 
in which proteomic data is available, such as growth on galactose, 
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acetate or glycerol + casamino acids (casAA) minimal medium and 
rich LB medium. In each case, we used the specific set of essential 
genes (see Methods) and for the environment specific genes we ran 
essentiality simulations with a genome-scale metabolic model in the 
corresponding growth condition (see Methods).

As a result, we obtained 164 nonessential TFs for galactose, 166 
for acetate, 171 for glycerol + casAA and 165 for rich LB medium. 
We found that most of the identified dispensable TFs (89%) are 
shared among all the tested conditions. We identified 22 candi-
date TFs for galactose and acetate that belong to the unique target  
case and have a positive PB. Proteome liberation calculations were 
made using these subsets of candidate TFs, predictions show that 
we can release 0.88 and 0.81% of the total proteome in galactose and 
acetate, respectively, with the deletion of all these TFs (Extended 
Data Fig. 2a,b). For glycerol, we found 24 candidate TF, liberating 
up to 2.9% of total proteome (Extended Data Fig. 2c) and finally 
for rich LB medium we identified 20 candidate TF, with a potential 
0.5% of liberation, being the worst condition for potential proteome 
liberation tested (Extended Data Fig. 2d). This is in agreement with 
previous proteome usage analysis, where it has been showed that 
at higher growth rates there is less of the dispensable proteome10,18.

Generation of combinatorial strains. Even though E. coli is 
one of the most studied organisms and its TRN has been widely 
investigated, only half of its genes have regulatory information 
(RegulonDB). We prevented detrimental effects on gene expres-
sion due to our incomplete knowledge of the regulatory network by 
selecting the smallest combination of TFs that liberates the greatest 
amount of resources.

Based on our ReProMin predictions, we generated two triple 
knockout (KO) strains for the best combinations of the shared tar-
get and unique target cases predicted in glucose minimal medium. 
In the shared target case, this corresponded to the strain PYC 
(ΔphoB − phosphate scavenging system, ΔyedW − unknown gene, 
ΔcusR − copper/silver export system regulator) with a PB of 1.3 fg 
representing 0.53% of the total proteome in glucose growth condi-
tions (Fig. 3a). This design was a particular case of shared regula-
tion where most of the target genes are only silenced by the deletion 
of all the three TFs together (Fig. 3c). In the unique target case the 
resulting strain was PFC (ΔphoB, phosphate scavenging system; 
ΔflhC, flagella master regulator and ΔcueR, copper efflux system) 
with a PB of 1.08 fg representing 0.44% of the total proteome in glu-
cose (Fig. 3b). The unique target case has a higher degree of con-
fidence in the design than the shared target case due to a simpler 
regulatory subnetwork, since we noticed that unique target cases 
mainly belong to the single input module network motif (SIM)17 
(Fig. 3d). We also generated a strain, using an intuitive approach, 
in which we eliminated three TFs that regulate nongrowth-related 
functions. To construct this strain, we randomly selected three TFs 
from those previously found downregulated in strains with regula-
tory mutations selected by adaptive laboratory evolution (ALE)9. 
The resulting strain was called FOG (Δ(fliA, oxyR, gadE)) the 
genes code for flagella sigma factor, oxidative stress master regu-
lator and acid resistance regulator, respectively. The FOG strain 
was not generated by our design pipeline; therefore, the regulatory 
interventions affect some essential functions (nine essential genes) 
mainly involved in de novo synthesis of AMP and heme groups 
and it was used as a control for comparison with the computation-
ally designed strains.

Finally, to test ReProMin in a different environment for which 
high confidence gene essentiality data is available, we also con-
structed the best 3KO strain in LB rich medium (Extended Data 
Fig. 2d). The resulting strain was PYN (ΔphoB, phosphate scaveng-
ing system; ΔyqhC, furfural reduction19 and ΔntrC, nitrogen regu-
lation two-component system) potentially liberating 0.33% of the 
total proteome.

RNA-seq confirmed the specificity of introduced mutations. 
The predictive power of ReProMin depends on the accuracy of the 
interactions captured in the E. coli TRN. We validated the predicted 
transcriptional changes for the case PFC that showed the greatest 
proteome release. We measured PFC and the wildtype (WT) strains’ 
transcriptome profiles obtained by RNA-seq in the same environ-
ment. This experiment aimed at determining the degree of success 
in gene silencing at the transcriptional level, and at assessing other 
possible transcriptional perturbations resulting from our regulatory 
modifications. Our results showed that no transcripts correspond-
ing to the three deleted TFs were detected in PFC (Extended Data 
Fig. 4a). By mapping the fold change obtained in the analysis to the 
predictions of the computational tool, it was possible to visualize the 
impact at the transcriptional level of the missing regulators on their 
targets (Extended Data Fig. 4c). Four targets associated to flhC, cor-
responding to genes forming the flagella (flgB, flgC, flgE and flgG) 
were completely silenced; furthermore, all the other flagella-related 
genes also registered a decrease on their expression. Regarding 
phoB, two targets were successfully silenced (phnI and phnL), both 
genes belong to an operon that is induced under phosphate starva-
tion and is required for use of phosphonate and phosphite as phos-
phorous sources20, many other targets related to this operon also 
reduced their expression. On the contrary, phnK present in the same 
operon was overexpressed. We were unable to map any transcripts 
to six genes belonging to the previously mentioned operon, which 
may not be entirely expressed in the absence of phosphate starva-
tion. Furthermore, phoR (part of the phoB–phoR two-component 
system) also reduced its expression. Finally, both targets of cueR 
(copA and cueO) also decreased drastically their abundance.

Regarding the accuracy of our ReProMin predictions, 30 genes of 
47 predicted silenced genes were silenced at different levels, whereas 
nine predicted silenced genes presented higher expression values 
than the WT strain. Carefully reviewing discrepancies among pre-
dicted and measured transcriptional changes revealed that some 
evidences on which the E. coli TRNs are built, are computationally 
predicted or derived from indirect observations. These weak pieces 
of evidence resulted in false predictions and may be refined if those 
networks are improved. Finally, transcripts of eight predicted tar-
gets were not found in either strain. These observations show that 
in 72% (28 of 39 measured genes) of the cases the predictions of the 
computational tool were accurate (Extended Data Fig. 4d).

In addition to the designed transcriptional changes, we found 17 
genes differentially expressed (eight downregulated genes and nine 
upregulated) (Extended Data Fig. 4b and Supplementary Table 4). 
This RNA-seq analysis shows that besides the intended transcrip-
tional changes, few off-target effects were identified at the transcrip-
tomic level in the PFC strain growing on glucose M9 medium.

To theoretically quantify the actual mass of the liberated pro-
teome fraction, we did an estimation of the translation rates of the 
gene targets associated to the deleted TFs plus the previously men-
tioned differentially expressed genes (Fig. 4a) (see Methods).

The calculations showed that the mass of the proteome fraction 
associated to the removed TFs targets decreased from a 0.48% of 
the total proteome in the WT to a 0.25% in PFC, CueR being the TF 
that contributes most to the liberation (Fig. 4b). Initially, ReProMin 
calculations estimated a liberation of 0.44% of the total proteome 
in PFC, according to these calculations (with the uncertainty that 
they may have) this would correspond to a 57% of success in the 
estimated resource liberation. Liberated resources are presumably 
redistributed for upregulated genes, which show a larger proteome 
fraction in the mutant (Fig. 4c), and could become available for the 
expression of engineered functions.

UT designed strains show increased cellular budget. Our three 
experimentally generated mutants (shared target case, unique target 
case and control) were evaluated in rich (LB) as well as in minimal  
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medium containing three different carbon sources (acetate, galac-
tose, glucose). The ReProMin designed strains (PYC and PFC) 
showed neither growth defects nor increase in the growth rate  
or biomass yield in any of the four conditions tested. On the con-
trary, the control strain (FOG) showed growth defects in all growth 
conditions tested (Extended Data Fig. 5). This phenotypic defect 
shown by FOG strain may be the result of the elimination of the 
principal acid resistance system activator (gadE), since we are using 
batch growth with no pH control. For glucose minimal medium, we 
also evaluated the effect of recombinant protein production using a 
plasmid expressing a genetic circuit with two fluorescent reporters 
(Fig. 5a)21. The burden caused by carrying a plasmid was reflected 
as a decrease in the growth rate in all tested strains (Extended Data 
Fig. 6a); this decrease is higher when the plasmid was expressing the 
genetic circuit; however, the burden displayed by both ReProMin 
designed strains was lower compared to the WT counterpart. 
Additionally, the PFC strain also showed a higher final biomass 
production (Extended Data Fig. 6b). It has been described that the 
expression levels of two protein reporters encoded on the same plas-
mid but without a regulatory connection between them is captured 
by a linear relationship that can be interpreted as an isocost line, a 
concept used in microeconomics to describe how two products can 
be bought with a limited budget, so the more is used on one, the 
less can be used on the other. These lines represent the boundary  
of the production budget of a given strain and growth condition  
(Fig. 5b)21. We obtained the isocost lines at balanced growth, defined 
as growth during the exponential phase in which a steady-state of 

the cellular concentration of both green (GFP) and red fluores-
cent protein (RFP) reporters is achieved (in other words, the cel-
lular concentration of fluorescent protein does not change in time 
after roughly 5 h) determined by two different methods: mean 
plate reader fluorescence and mean fluorescence measured by flow 
cytometry. The line corresponding to PFC strain shows a paral-
lel upward shift compared to the WT strain, which represents an 
increase of 9% in absolute fluorescence (Fig. 5c), 5% in normalized 
fluorescence per cell (Fig. 5d) and 12% in mean fluorescence per cell 
(Extended Data Fig. 7). This difference is increased at the station-
ary phase of the culture (~22 h) where higher maximal biomass is 
achieved and the quantity of recombinant protein is increased up to 
18% (Extended Data Fig. 9a). The shared target case strain (PYC) 
showed no budget increase compared to the WT strain in abso-
lute fluorescence (Fig. 5c), however it showed increased budget in 
normalized fluorescence (Fig. 5d). The PYC mutant show reduced 
maximal biomass production (Extended Data Fig. 6b), these results 
suggest that there is increased budget but also reduced growth 
capacity, the latter probably due to unexpected regulatory interac-
tions resulting from the more complex case of the shared target case.

Our ME-model simulations showed that reducing the unmod-
eled protein fraction (UPF) from 0.36 to 0.25, increase the maxi-
mum recombinant proteome sector from 0.15 to 0.20 (Extended 
Data Fig. 1). These increases in recombinant protein production 
are also in agreement with the experimental observations in previ-
ous works22, where for glucose minimal medium growth conditions  
the maximum observed heterologous fraction was 14% of the total 
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proteome, then a 0.5–1% increase in proteome availability may 
result in a 10% increase in the heterologous budget, which is close 
to what we found in our PFC strain.

We also evaluated and constructed the fourth best combination 
of mutants for glucose minimal medium. ReProMin predicts as PFC 
with the addition of marA as the best fourth TF to KO in glucose 
minimal medium, with a 0.54% of PB. The resulting strain, PFCM 
(ΔmarA, multiple antibiotic resistance), also has a higher proteomic 
budget than the WT, however, it is not higher than PFC at balanced 
growth (Extended Data Fig. 8a), confirming our hypothesis that 
lower number of genetic interventions will have a higher probabil-
ity of success due to epistatic interactions of multiple TF deletions. 
Additionally, to experimentally test ReProMin predictions in a dif-
ferent environment we evaluated the previously described PYN 
mutant in rich LB medium. PYN has a higher proteome budget than 
the WT strain during balanced growth on LB, and also at stationary 
phase (Extended Data Figs. 8b and 9b) that demonstrates that our 
method can be used in any condition where gene essentiality and 
proteomics information is available.

Expression of a heterologous metabolic pathway. We tested the 
ability of our engineered strain for synthesizing the molecule viola-
cein as a proof-of-concept for applications of the mutants designed 
by our method, with a higher proteomic budget, in metabolic engi-
neering using a costly heterologous pathway. Violacein is a pigment 
from Chromobacterium violaceum endowed with many biologi-
cal activities (antibacterial, antiviral, antiparasite) and has recently 
gained importance in the industrial field especially for applications 
in cosmetics, medicines and fabrics23. Violacein is synthesized in a 

five-step metabolic pathway using tryptophan as a precursor. Here, 
we used the violacein pathway plasmid reported by Darlington 
et al.13, where the five genes for violacein biosynthesis are arranged in 
two operons, one consisting of vioA constitutively expressed, while 
the rest of the pathway encoded by the vioBCDE genes is under the 
control of an N-acyl-homoserine lactone- (AHL-) inducible pro-
moter13 (Fig. 6a). This construction follows the same principle as the 
previous circuit so the more of one module is produced, the less of 
the other is expressed due to the competition for limited resources 
for gene expression. However, in this case the number of genes in 
each module is different and code for actively metabolic enzymes 
with different kinetic properties, which results in differential viola-
cein biosynthesis. This system is ideal to test the ReProMin designed 
strains, since their capacity to produce a metabolite from a heter-
ologous pathway is directly dependent on the fraction of the cellu-
lar machinery that can be allocated for the expression of accessory 
proteome in a range of conditions (from low to high competition).

We evaluated violacein production after 24 h in the WT and PFC 
strains using M9 glucose medium with and without tryptophan 
(2.0 g l−1), in both cases AHL (1.25, 2.5, 5, 10, 20 nM) was added for 
induction. We found that the maximum production was achieved 
with just a minimum amount of inducer (1.25 nM) indicating that 
it is crucial to have a balanced expression of the pathway with the 
right amount of each module to maximize the synthesis of the final 
product. PFC showed a mean increase in mg of violacein produc-
tion of 18% (P < 0.05) (Fig. 6b) and 20% in normalized data (mg 
violacein per mg protein) (Extended Data Fig. 10a). Even though 
the designed regulatory interventions do not target the metabolic 
network of the organism, we still found a significant increase in 
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violacein production, even without tryptophan addition in a non-
metabolically engineered background and without further culture 
condition optimization (Extended Data Fig. 10b). Previous stud-
ies have shown that proteome reallocation, such as the obtained by 
ALE do not require metabolic flux distribution24; therefore, we do 
not expect a relevant flux redistribution in PFC strain to be respon-
sible for the increase in violacein production, although it would 
be interesting to measure it. This increase, presumably resulting 
from a better expression of the heterologous pathway, shows that 
our approach can also be harnessed to increase the production of 
metabolites from costly heterologous metabolic pathways.

Discussion
Gene regulatory networks are robust and can be severely rewired 
with interesting phenotypic outcomes25, thus they are a perfect 
rational engineering target for synthetic biology applications. In 
this work, we have proved that the definition of an essential gene 
set together with regulatory network information allows the iden-
tification of TFs whose elimination leads directly to silencing pro-
teome fractions that are not used in a particular condition. We have 
showed that by eliminating hedging proteome activators we can 
release resources and increase cellular capacity for engineered func-
tions. The certainty of ReProMin calculations will always depend on 
gene essentiality data and the knowledge of gene–TF interactions. 
In this case, due to the gaps in our understanding of the gene–TF 
interactions of E. coli, we found that it is better to use the unique 
target cases where the combinations are less complex.

In agreement with the presented metabolism and gene- 
expression-model simulations reducing the unused protein frac-
tion, our designed strain showed a higher proteomic budget, 
measured by the isocost lines, and a higher capacity to produce a 
metabolite from a heterologous pathway. Even though the amount 
of reduced proteome in the PFC strain may seem insignificant in the 
evaluated conditions, we have shown that a 1% reduction of unused 
proteome can increase the heterologous proteome fraction by 10%. 
The total amount of proteome available for reduction is dependent 
on the growth conditions and different methods of calculation may 
yield different numbers. For example, O’Brien et al. showed that 

in glucose minimal medium up to 30% of the proteome may be 
unused10. According to our classification of essential gene list (that 
includes several experimental datasets) and comparing metabolism 
and gene-expression-model proteome use predictions to actual 
proteomic data16, we calculate that a 33.6% of proteome is directly 
available for reduction. Using our method, we were able to liberate 
a 1.3% in the best of the analyzed cases. Most of the genes that con-
tribute to the dispensable proteome have no known TF or are regu-
lated by a TF classified as essential, therefore are out of the scope of 
ReProMin. Furthermore, analyzing the data of a genome reduced 
strain of E. coli26, we found that a genome reduction of 15% (743 
genes) led to a proteome reduction (according to our calculations 
with the same proteomic dataset) of only 1.5% in the same condi-
tion (glucose minimal medium). Therefore, reducing the full 30% of 
dispensable proteome remains a challenge that may be tackled using 
a combination of approaches, such as targeting global regulators, 
reducing large sections of the genome or by the optimization of the 
core proteome27.

By comparing our strains with an intuitive control strain, we 
show that inaccurate TF elimination results in detrimental effects 
on growth, maximal biomass and protein production (Extended 
Data Figs. 6 and 9). These findings indicate that the elimination of 
a combination of TFs is not a trivial process; it may affect essential 
functions and introduce phenotypic defects. Our method shows 
good accuracy in terms of the obtained gene expression changes 
measured by RNA-seq, despite our limited knowledge of the regula-
tory networks. In addition, the regulatory data available is condi-
tion dependent, which limits the predictive power of our method, 
since we need to assume that regulatory interactions are present at 
all times. We anticipate that developments in high-throughput tech-
nologies (such as chromatin immunoprecipitation-seq) combined 
with new computational approaches28–30 will enable the fast genera-
tion of complete regulatory networks, that combined with absolute 
quantification of proteomes or translation rates, will enable the 
application of ReProMin method to even nonmodel organisms.

We presume liberated resources are redistributed mainly among 
the detected upregulated genes that proteome fraction is bigger in 
the mutant (Fig. 4c), and we expect these resources to be redirected 
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to the expression of engineered functions when introduced to the 
modified strains.

Several experimental approaches have been applied for resource 
allocation optimization in bacterial host engineering. Genome mini-
mization has been mainly done by large scale genetic interventions 
whose outcomes are difficult to predict and do not show greater 
genome stability31,32. ALE has showed great success, especially to 
identify functions not related to growth33; however, it selects for fast 
growing strains that do not necessarily result in the best production 
phenotypes. Moreover, the underlying selection mechanisms in ALE 
are normally not known therefore its effects are not predictable34. 
Genome-scale models, such as the metabolism and gene-expression 
model, may also be used to find the proteomic cost and fitness ben-
efit of gene expression, thus aiding in the design of proteome alloca-
tion; however, kinetic data of each protein is needed35 and its scope 
focuses on growth related functions. There are only a few reports 
describing regulatory approaches to improve production pheno-
types, such as the global transcriptional machinery engineering36, 
but none of them followed a rational approach. The methodology 
presented in this work is a new strategy for proteome optimization 
with minimal genetic interventions that overcomes the serious limi-
tations of deleting large regions of the genome; it is a flexible pipeline 
that can be applied to other growth and production conditions and 
also to different organisms where sufficient information is available. 
This work shows the potential of rational design of biological sys-
tems over the predominantly used trial and error approaches.
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Methods
Metabolism and gene-expression-model simulations. All simulations were done 
using the model iJL1678b-ME14. The corresponding transcription and translation 
reactions for recombinant protein (GFP) production were manually added to 
the model using standard methods. Unused protein fraction and flux through 
the recombinant protein production are changeable variables in the metabolism 
and gene-expression model that affect predicted growth rate and proteome 
composition, the values of these two variables were systematically changed in 
the metabolism and gene-expression model to assess their effect on growth rate 
(UPF = 0.36, 0.30, 0.25; flux = 0, 0.001, 0.002, 0.0025, 0.0030, 0.0035, 0.0040), 
all other model parameters were set as default. Proteome sectors were classified 
according to O’Brien et al.10.

Definition of the essential gene list. To compile the essential gene list in the 
glucose minimal medium condition we combined five different datasets from 
different sources. Three of them were experimentally generated using different 
methods of gene disruption: (1) random transposon mutagenesis using M9 with 
glucose as growth condition (Tn-seq)37, (2) removing large fragments of the 
chromosome using a homologous recombination system in rich medium (LB)38 
and (3) the updated list of the mutants of the Keio collection that are lethal, the 
collection was generated using rich medium39,40. Two gene lists were generated 
in silico using simulations of genome-scale metabolic and expression models 
capable of predicting gene expression needs in a particular condition: (4) genes 
that are essential for growth in M9 with glucose using iOL1554-ME model41 and 
(5) genes that are essential for growth in the metabolic model iJO1366 and also 
experimentally in M9 with glucose42. Within the compiled list, genes exclusively 
belonging to the Tn-seq and the glucose minimal medium metabolism and 
gene-expression-model simulation gene lists were considered conditionally 
essential, as these gene lists were originally generated using M9 with glucose as 
the growth condition, while the rest of the genes were classified as core essential 
for our purposes. For the cases of galactose, acetate and glycerol + casAA minimal 
medium conditions, we performed gene essentially analysis with the iML1515 
metabolic model43 in COBRApy44.

For the rich LB medium case, we used the Keio mutants list.

Identification of candidate regulators and combinatorial analysis. We sorted the 
TF–gene interactions from RegulonDB (v.8, regulondb.ccg.unam.mx), discarding 
all the sigma factor–gene interactions. Next, we classified as essential all TFs that 
activate at least one essential gene (from the condition-specific essential gene 
list) and as nonessential all TFs that do not activate any essential genes. Then we 
analyzed the subnetwork of interactions of each nonessential TF by numerically 
analyzing the output level of each TF (TFOUT), which is classified into positive and 
negative output (TFOUT+ and TFOUT−) representing positive and negative regulated 
genes, respectively, and the degree of entry of each regulated gene (GENEIN) in 
turn also divided into positive and negative (GENEIN+ and GENEIN−). We defined 
as candidate for proteome reduction all those TFs that activate at least one unique 
gene, which numerically meets the following condition:

TFOUTþ≥1 ^ GENEnINþ ¼ 1 ^ GENEnIN� ≥0 ð1Þ

where GENEn represents any gene activated by TF.
On the other hand, the proteomic dataset previously described17 was used to 

calculate the PL of each gene and PB of each TF according to the equations in Fig. 2.
ReProMin combinatorial analysis was achieved as follows, given a list of TFs, 

the total number of combinations was calculated with this formula:

P n; rð Þ ¼ n!
r! n� rð Þ! ð2Þ

where n represents the number of candidate TFs, and r the size of the combination 
(r ≤ n)

Next, the total number of silenced and induced genes for each combination was 
determined following the next criteria: for every gene involved in the combination, 
we subtracted one from the value of GENEIN+ for each TF that regulates the target 
gene positively and one to the value of GENEIN− for each TF that regulates the 
target gene negatively. At the end of this process a gene was considered silenced if:

GENEIN ¼ GENEINþ ¼ 0 ð3Þ

or induced if:

GENEIN ¼ GENEIN� ¼ 0 ð4Þ

Finally, the PB of each combination tested was calculated and ranked.
The full computational set of tools coded in Python and datasets used in the 

analysis are available in the following repository (https://github.com/utrillalab/
repromin). Cytoscape software v.3.7 (ref. 45) was used to plot the network 
representation of the data.

Generation of combinatorial knockout strains. The combinatorial mutants were 
generated by sequential P1 phage transduction from the individual knockout 

strains of the Keio collection according to the protocol described by Miller46. The 
removal of the kanamycin resistance cassette before each transduction was done 
using the pE-FLP plasmid (Addgene plasmid no. 45978), pE-FLP was a gift from 
D. Endy and K. Shearwinand47. Each knockout strain was confirmed by PCR using 
primers flanking each gene. In all experiments E. coli BW25113 was used as the 
WT background. The characteristics of the strains, plasmids and primers used in 
this study are described in the supplementary material (Supplementary Table 5).

RNA sample extraction and sequencing. Strains were grown in 50 ml of M9 
medium with glucose (4 g l−1) M9 medium in 250 ml Erlenmeyer flasks cultures 
in an orbital incubator at 37 °C (250 r.p.m.). Cells were collected in mid-log phase 
using the Qiagen’s RNAprotect bacteria reagent according to the manufacturer’s 
specifications. Cell pellets were incubated with lysozyme, SuperaseIn and protease 
K for 10 min at 37 °C. Total RNA was isolated and purified using Zymo Research’s 
Quick-RNA kit according to the manufacturer’s specifications. All samples’ quality 
was inspected in a bioanalyzer RNA chip (Agilent). Starting with 10 μg of total 
RNA of each sample, the removal of ribosomal RNA was done with the Ribominus 
kit by Invitrogen. For the construction of the libraries, the TruSeq Stranded mRNA 
HT Sample Prep Kit by Illumina was used. For sequencing a NextSeq 500 v.2 was 
used, with a configuration of 2 × 75 paired-end read and 10 million reads per 
sample.

Reads were mapped to reference genome E. coli MG1655 (RefSeq, 
NC_000913.3) using aligner Bowtie2 (http://bowtie-bio.sourceforge.net/
bowtie2). Final differential analysis was made using the Cufflinks library (http://
cole-trapnell-lab.github.io/cufflinks). Genes with a log2 fold change that was 
≥1 were considered upregulated and ≤−1 were considered downregulated, 
considering P ≤ 0.01 and n = 2.

Estimation of the theoretical proteome from RNA-seq data. To do an estimation 
of the translation rates from proteomics data and from transcript abundances, we 
assumed that the transcripts in our RNA-seq data yields the proteome reported by 
Schmidt et al. in glucose, so we calculated each gene translation efficiency rate (si) 
using this equation:

si ¼ Ccelli
ri

where ri represents the raw fragments per kilobase of transcript per million 
mapped reads value of each gene and Ccelli the number of protein copies reported. 
For all the genes with no proteomic data we assumed a fixed rate corresponding 
to the mean rate of the reported genes. Then, we used these rates to estimate the 
number of protein copies per cell (Pi) for our mutant PFC according to:

Pi ¼ ri ´ si

Finally, the gene load was calculated as previously described.

Growth phenotype characterization. For the evaluation of growth in different 
carbon sources, the following conditions were used: glucose M9 medium (4 g l−1), 
galactose M9 medium (3.2 g l−1), acetate M9 medium (2.5 g l−1) and LB rich 
medium. Cells were cultured overnight in the corresponding medium. The next 
day the strains were diluted to an optical density (OD600) of 0.05 in fresh medium 
and 150 μl of the fresh culture was transferred to a transparent 96-well plate 
(Corning) and incubated at 37 °C with fast linear shaking in a micro-plate reader 
(Synergy 2.0, BioTek) for 24 h, taking measurements for OD600 every 20 min. The 
characterization of the growth kinetics was conducted using the algorithm Fitderiv 
(v.1.0) developed by Swain et al.48 with the default parameters. The algorithm 
performs a Gaussian fit of the raw data and in all cases the resulted fitted value 
±2 s.d. (ensuring a confidence of at least 95% (P ≤ 0.05)) was used when comparing 
the mutant strains against the WT.

Isocost circuit evaluation. Strains were inoculated into glucose M9 medium with 
gentamicin (20 μg ml−1), and grown overnight. Next day, strains were diluted to 
an OD600 of 0.05 in fresh glucose M9 medium containing AHL (Sigma-Aldrich, 
final concentrations of 1.25, 2.5, 5, 10, 20 nM), then 150 μl of the fresh culture 
was transferred to a 96-well black plate with transparent bottom (Corning) 
and incubated as described previously, taking measurements for OD600, GFP 
(excitation, 485 nm and emission, 528 nm) and RFP (excitation, 590 nm and 
emission, 645 nm). The characterization of the production kinetics of GFP and 
RFP was also done using the algorithm described above.

Flow cytometry measurements. For flow cytometry measurements, cell cultures 
were prepared as described before, but later grown in 24-well plates using 1 ml 
of medium. Every hour, 50 μl aliquots were taken from each well and mixed with 
150 μl of PBS, the volume of the wells was kept constant by adding fresh medium. 
Cell suspension was loaded into an Attune NxT Flow Cytometer (ThermoFisher) 
and analyzed for GFP (excitation,. 488 nm and emission, 525/50 nm) and RFP 
(excitation, 561 nm and emission, 620/15 nm). For each sample 20,000 events were 
analyzed and population means were estimated using the default software of the 
instrument. The characterization of the production kinetics of GFP and RFP was 
also done using the algorithm described above.
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Characterization of violacein-producing strains. The strains were inoculated 
into glucose M9 medium with gentamicin (20 μg ml−1), and grown overnight. 
Next day, strains were diluted to an OD600 of 0.05 in fresh glucose M9 medium 
containing AHL (1.25, 2.5, 5, 10, 20 nM) and tryptophan (2.0 g l−1), then 150 μl 
of the fresh culture was transferred to a 96-well plate and incubated as described 
before. After 24 h the plate was centrifuged (13,000g, 10 min), and the supernatant 
of each well was discarded. Violacein was extracted by suspending the pellet in 
each well in 150 µl absolute ethanol and incubating the plate at 95 °C for 10 min 
followed by pelleting cell debris (13,000g, 10 min). Violacein present in the extract 
was determined spectrophotometrically at 575 nm in a micro-plate reader (Synergy 
2.0, BioTek) and quantification was made using a curve with a purchased violacein 
standard (Sigma-Aldrich).

Quantification of total protein. The Biuret method was used for the quantification 
of total protein: 1 ml of culture was taken and centrifuged (13,000g, 10 min). The 
supernatant was collected and the pellet was washed with 0.2 ml of water, resuspended 
and centrifuged again, the water was discarded. Pellets were resuspended in 0.1 ml 
of 6 M NaOH and incubated at 95 °C for 10 min to break the cells and hydrolyze 
the proteins. To perform the Biuret reaction, 0.1 ml of 3.2% CuSO4 was added to 
the samples and incubated under vigorous agitation for 5 min. Next, samples were 
centrifuged for 2 min and 150 μl of supernatant was placed in a 96-well plate. The 
absorbance at 555 nm was measured in a plate reader (Synergy 2.0, BioTek).

Statistics. Samples sizes are defined in each figure legend. In all trials, three 
replicates were included and the experiment was repeated independently on three 
different days. For growth kinetics and fluorescence, the value of the replicates is 
presented as the Gaussian fitted value ±2 s.d. For violacein, results are presented 
as mean ± s.d. and statistical significance between conditions was calculated using 
Student’s t-test (two-tailed). All statistical calculations and numerical analyses were 
performed using Python 3 packages.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data from this study have been deposited in NCBI’s Gene Expression 
Omnibus (GSE134335). Additional data is available from the corresponding author 
upon reasonable request.

Code availability
The code and data to run ReProMin can be found at: https://github.com/utrillalab/
repromin
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Extended Data Fig. 1 | Me-model simulations and proteome sector response to reducing the unmodeled protein fraction (UPF). the Me-model 
iJL1678b-Me was used to simulate the effect of the reduction of the UPF and different expression levels of an unused recombinant model protein (GFP) 
(see methods). Similar to the maintenance energy coefficient, the hedging proteome and other non-growth related (thus not modeled) functions are 
accounted for in Me-models as a part of the UPF. each panel shows a, growth rate and the corresponding fraction of each proteome sector b, core sector 
and the alternative element dependent sector: c, the carbon sector d, the nitrogen sector e, the phosphate sector f, the sulphur sector g, the non-Me 
sector h, the recombinant sector, comprised by the maximum attained GFP expression, i, the other sector (non-classified) and j, the UPF sector.  
the simulation shows an increased availability of cellular resources for recombinant protein production by reducing the UPF.
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Extended Data Fig. 2 | ReProMin proteome liberation landscapes corresponding to the Ut case. Potential proteome liberation landscape corresponding 
to a, Galactose, b, Acetate, c, Glycerol + casAA and d, rich Medium (LB).
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Extended Data Fig. 3 | Regulatory subnetwork of ReProMin predicted gene targets. Subnetwork corresponding to a, St case PYC mutant and b, Ut case 
PFC mutant; blue circles represent predicted silenced targets, yellow circles predicted induced targets and gray circles genes with no proteomic coverage; 
size of the circles is proportional to the PL of the target.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | transcriptomic analysis of the Ut case designed strain. a, Correlation plot for PFC and Wt strains transcripts. Green squares 
represent the three deleted tFs. b, Volcano plot showing differential gene expression. In both cases, statistically significant genes are highlighted (blue – 
downregulated, yellow—upregulated) (log2 Fold Change ≥ 1 or ≤−1, P ≤ 0.01, n = 2). c, Integration of transcriptomics with computational tool predictions. 
the size of the circle corresponds to the fold change of each target (the largest circles represent fully silenced genes), in all cases blue circles represent 
targets releasing resources (down regulated), yellow circles represent targets generating burden (upregulated) and grey circles targets that were not 
found expressed. d, Accuracy of computational tool predictions based on rNAseq data. Yellow circles represent wrong predictions, blue circles represent 
accurate predictions and grey circles represent unmapped predictions (expression was not detected).
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Extended Data Fig. 5 | Phenotypic evaluation generated strains based on glucose ReProMin predictions (Ut and St cases) and control. Growth on 
different carbon source supplemented M9 medium and rich medium (LB). a-d, shows max growth rate and f-i, shows max O.D. Points represent the 
Gaussian fitted value ± 2 s.d. for n = 9.

NAtURe CHeMICAL BIoLoGy | www.nature.com/naturechemicalbiology

http://www.nature.com/naturechemicalbiology


Articles NaTuRE CHEMiCal BiOlOgy

Extended Data Fig. 6 | Metabolic burden evaluation of strains based on glucose ReProMin predictions (Ut and St cases) and control. Metabolic burden 
while carrying empty, circuit plasmid and induced circuit plasmid, a, shows max growth rate and b, shows max O.D. Points represent the Gaussian fitted 
value ± 2 s.d. for n = 9.
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Extended Data Fig. 7 | Synthetic circuit characterization in glucose M9 medium. Isocost lines showing mean fluorescence per cell measured by flow 
cytometry during balanced growth (~5 h). Points represent the Gaussian fitted fluorescence value ± 2 s.d. for n = 9 of red reporter (x axis) plotted against 
the green reporter (y axis) in an increasing inducer concentration (0, 2.5, 5, 20 nM AHL). A linear regression was used to fit the points to a line.
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Extended Data Fig. 8 | Isocost lines during balanced growth (~5 h). Isocost lines of the generated mutant strains for two growth conditions: a, Glucose 
M9 medium and b, rich medium. Left: absolute fluorescence, right: normalized fluorescence. Points represent the Gaussian fitted fluorescence value ± 2 s.d.  
for n = 9 of red reporter (x axis) plotted against the green reporter (y axis) in an increasing inducer concentration (0, 2.5, 5, 20 nM AHL). A linear 
regression was used to fit the points to a line.
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Extended Data Fig. 9 | Isocost lines during stationary phase (~22 hrs). Isocost lines of the generated mutant strains for two growth conditions: a, Glucose 
M9 medium and b, rich medium. Left: absolute fluorescence, right: normalized fluorescence Points represent the Gaussian fitted fluorescence value ± 2 s.d.  
for n = 9 of red reporter (x axis) plotted against the green reporter (y axis) in an increasing inducer concentration (0, 2.5, 5, 20 nM AHL). A linear 
regression was used to fit the points to a line.

NAtURe CHeMICAL BIoLoGy | www.nature.com/naturechemicalbiology

http://www.nature.com/naturechemicalbiology


Articles NaTuRE CHEMiCal BiOlOgy

Extended Data Fig. 10 | Violacein production characterization. a, Protein normalized violacein production using 2 g/L tryptophan in the presence of AHL 
(20 nM) (mean ± s.d., n = 9). b, total violacein production without adding tryptophan after 24 h in the presence of increasing inducer (AHL) concentrations 
(mean ± s.d., n = 9). Asterisks *, ** and *** denote significant differences between Wt and PFC using a two-tailed unpaired Student’s t-test. the following 
P values were obtained for normalized violacein production: 1 h, P = 0.0003; 2 h, P = 0.5647; 6 h, P < 0.0001. the following P values were obtained for 
violacein production with different AHL concentrations: No AHL, P = 0.0599; 1.25 nM, P = 0.0146; 2.5 nM, P = 0.0021; 5 nM, P < 0.0001; 10 nM, P = 0.0014; 
20 nM, P = 0.0005.

NAtURe CHeMICAL BIoLoGy | www.nature.com/naturechemicalbiology

http://www.nature.com/naturechemicalbiology


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Jose Utrilla

Last updated by author(s): May 26, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Growth, fluorescence, total protein and total violacein data was collected using Biotek Gen5 Software. 
Flow cytometry data was collected using Attune NxT Software (ver. 4.2). 
RNA-seq data was collected using NextSeq 500 v2.

Data analysis ME-Model simulations were performed using model iJL1678b and Python packages Cobrapy (ver. 0.18) and Ecolime (ver. 0.4). 
Gene essentiality, regulatory network analysis and ReProMin combinatorial analysis were done using custom Python 3 code. 
Regulatory networks representations were done using Cytoscape software (ver. 3.7 ). 
The analysis of growth and fluorescence kinetics was conducted using the algorithm Fitderiv (ver. 1.0) described in ref. 48. 
All graphs and associated statistical calculations and numerical analyses were performed using the latest Python 3 packages (matplotlib, 
pandas, numpy and scipy).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

RNA-seq data from this study have been deposited in NCBI's Gene Expression Omnibus (GSE 134335). 
The code to run ReProMin can be found at: https://github.com/utrillalab/repromin
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to determine sample size for experimentation given the minimal experimental variation in assays based on 
our previous experience.

Data exclusions No data was excluded from the analysis.

Replication All experiments were carried out at least 3 times to verify its reproducibility. All the attempts of replication were succesful. 

Randomization We are always comparing mutant strains vs WT strains so no randomization was performed. 

Blinding No blinding was performed. Blinding was unnecessary as all data collection and analysis is quantitative and not qualitative in nature.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Methodology

Sample preparation Grown in 24-well plates using 1 ml of medium. Every hour 50 μL aliquots were taken from each well and mixed with 150 μL of 
PBS, the volume of the wells was kept constant by adding fresh medium.

Instrument Attune NxT Flow Cytometer (ThermoFisher, Waltham, MA, USA).

Software Attune NxT Software (ver. 4.2).

Cell population abundance  For each sample 20,000 events were analysed and population means were estimated.

Gating strategy Bacterial cells showing green (BL1, excitation 561 nm; emission 620/15 nm) and red fluorescence signals (YL2, excitation 561 nm; 
emission 620/15 nm) were determined with the following settings: FSC 460 V; SSC 360 V; BL1 260 V; YL2 280 V.  
All events detected were recorded and we applied an additional gate, identical for all samples, excluding the events in the upper 
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5% of both FSC and SSC, which were likely cell aggregates. The remaining 95% events (20,000 in total in this fraction) were 
analysed

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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